Nonlinear stochastic integrals for hyperfinite Lévy processes
نویسنده
چکیده
We develop a notion of nonlinear stochastic integrals for hyperfinite Lévy processes, and use it to find exact formulas for expressions which are intuitively of the form Pt s=0 φ(ω, dls, s) and Qt s=0 ψ(ω, dls, s), where l is a Lévy process. These formulas are then applied to geometric Lévy processes, infinitesimal transformations of hyperfinite Lévy processes, and to minimal martingale measures. Some of the central concepts and results are closely related to those found in S. Cohen’s work on stochastic calculus for processes with jumps on manifolds, and the paper may be regarded as a reworking of his ideas in a different setting and with totally different techniques.
منابع مشابه
Hyperfinite Lévy Processes
A hyperfinite Lévy process is an infinitesimal random walk (in the sense of nonstandard analysis) which with probability one is finite for all finite times. We develop the basic theory for hyperfinite Lévy processes and find a characterization in terms of transition probabilities. The standard part of a hyperfinite Lévy process is a (standard) Lévy process, and we show that given a generating t...
متن کاملOn Continuity Properties of the Law of Integrals of Lévy Processes
Let (ξ, η) be a bivariate Lévy process such that the integral ∫∞ 0 e −ξt− dηt converges almost surely. We characterise, in terms of their Lévy measures, those Lévy processes for which (the distribution of) this integral has atoms. We then turn attention to almost surely convergent integrals of the form I := ∫∞ 0 g(ξt) dt, where g is a deterministic function. We give sufficient conditions ensuri...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملStochastic equations generating continuous multiplicative cascades
Discrete multiplicative turbulent cascades are described using a formalism involving infinitely divisible random measures. This permits to consider the continuous limit of a cascade developed on a continuum of scales, and to provide the stochastic equations defining such processes, involving infinitely divisible stochastic integrals. Causal evolution laws are also given. This gives the first ge...
متن کاملExtremal behavior of stochastic integrals driven by regularly varying Lévy processes
We study the extremal behavior of a stochastic integral driven by a multivariate Lévy process that is regularly varying with index α > 0. For predictable integrands with a finite (α + δ)-moment, for some δ > 0, we show that the extremal behavior of the stochastic integral is due to one big jump of the driving Lévy process and we determine its limit measure associated with regular variation on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Logic & Analysis
دوره 1 شماره
صفحات -
تاریخ انتشار 2008